Intracerebral Transplants and Memory Dysfunction: Circuitry Repair or Functional Level Setting?
نویسندگان
چکیده
Intracerebral grafting techniques of fetal neural cells have been used essentially with two main types of lesion paradigms, namely damage to long projection systems, in which the source and the target are clearly separate, and damage to neurons that are involved in local circuits within a small (sub)region of the brain. With the first lesion paradigm, grafts placed homotopically (in the source) are not appropriate because their fibers grow poorly through the host parenchyma and fail to reach their normal target. To be successful, the grafts must be placed ectopically in the target region of the damaged projection systems, where generally they work as level-setting systems. Conversely, with the second paradigm, the grafts are supposed to compensate for a local loss of neurons and must be placed homotopically to induce functional effects that are based on the reconstruction of a point-to-point circuitry. By inserting a biological or artificial bridging-substrate between the source and the target of long projection systems, it might be possible to combine the positive effects of both homotopic and ectopic grafting by achieving both target reinnervation and normal control of the grafted neurons within the source area. These issues are illustrated and discussed in this review.
منابع مشابه
Low Power March Memory Test Algorithm for Static Random Access Memories (TECHNICAL NOTE)
Memories are most important building blocks in many digital systems. As the Integrated Circuits requirements are growing, the test circuitry must grow as well. There is a need for more efficient test techniques with low power and high speed. Many Memory Built in Self-Test techniques have been proposed to test memories. Compared with combinational and sequential circuits memory testing utilizes ...
متن کاملRole of Amygdala-Infralimbic Cortex Circuitry in Glucocorticoid-induced Facilitation of Auditory Fear Memory Extinction
Introduction: The basolateral amygdala (BLA) and infralimbic area (IL) of the medial prefrontal cortex (mPFC) are two interconnected brain structures that mediate both fear memory expression and extinction. Besides the well-known role of the BLA in the acquisition and expression of fear memory, projections from IL to BLA inhibit fear expression and have a critical role in fear extinction. Howev...
متن کاملBrain Single Photon Emission Computed Tomography Scan (SPECT) and Functional MRI in Systemic Lupus Erythematosus Patients with Cognitive Dysfunction: A Systematic Review
Objective(s): Systemic lupus erythematosus (SLE) is an autoimmune disease with a wide range of clinical manifestations. Cognitive dysfunction is one of the manifestations that could present prior to the emergence of any other neuropsychiatric involvements in SLE. Cognitive dysfunction is a subtle condition occurring with ahigh frequency. However, there is no data on the correlation of cognitive...
متن کاملTracing ischemic memory by metabolic pathways: BMIPP and beyond
Myocardial ischemia (MI) resulting in infarction is an important cause of mortality and morbidity worldwide. Acute ischaemia rapidly impairs myocardial contractile function. Myocardial dysfunction persisting for several hours after transient non-lethal ischaemia, eventually resulting in full functional recovery is termed as myocardial stunning. Hibernation is now thought to be...
متن کاملProgress in retinal sheet transplantation.
The aim of retinal transplantation is to prevent blindness and to restore eyesight, i.e. to rescue photoreceptors or to replace damaged photoreceptors with the hope of re-establishing neural circuitry. A promising experimental paradigm is the sub-retinal transplantation of sheets of fetal retina, with or without its attached retinal pigment epithelium (RPE), into recipient rats with retinal deg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2000